Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 668
Filtrar
1.
Curr Top Med Chem ; 24(1): 31-44, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37929725

RESUMO

Bacterial proteins targeting the appropriate subcellular sites are the base for their proper function. Several studies have shown that the anionic phospholipid cardiolipin (CL), a conical lipid preferring negative membrane curvature, modulates the lipid bilayers' structure, which impacts the activity of their resident proteins. Due to the favor of negative membrane curvature, CL is not randomly distributed in the bacterial plasma membrane. In contrast, it gathers in particular parts of the cell membrane to form microdomains, in which many functional membrane proteins are accumulated and carry out diverse physiological processes of bacteria, such as cell division, metabolism, infection, and antibiotic residence. In addition, CL has a unique structure that carries two negative charges, which makes it play a pivotal role in protein assembly, interaction, and location. These characteristics of CL make it closely related to many crucial physiological functions of bacteria. Here, we have reviewed the mechanism of protein dynamics mediated by CL initiated on the bacterial membrane. Furthermore, we studied the effect of CL on bacterial infection and antibiotic residence. Finally, the CL-targeting therapeutic agents for antibacterial therapy are also examined.


Assuntos
Cardiolipinas , Proteínas de Membrana , Cardiolipinas/análise , Cardiolipinas/química , Cardiolipinas/metabolismo , Membrana Celular/química , Proteínas de Membrana/metabolismo , Bactérias/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo
2.
J Inorg Biochem ; 252: 112455, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38141433

RESUMO

The cleavage of the axial S(Met) - Fe bond in cytochrome c (cytc) upon binding to cardiolipin (CL), a glycerophospholipid of the inner mitochondrial membrane, is one of the key molecular changes that impart cytc with (lipo)peroxidase activity essential to its pro-apoptotic function. In this work, UV - VIS, CD, MCD and fluorescence spectroscopies were used to address the role of the Fe - M80 bond in controlling the cytc-CL interaction, by studying the binding of the Met80Ala (M80A) variant of S. cerevisiae iso-1 cytc (ycc) to CL liposomes in comparison with the wt protein [Paradisi et al. J. Biol. Inorg. Chem. 25 (2020) 467-487]. The results show that the integrity of the six-coordinate heme center along with the distal heme site containing the Met80 ligand is a not requisite for cytc binding to CL. Indeed, deletion of the Fe - S(Met80) bond has a little impact on the mechanism of ycc-CL interaction, although it results in an increased heme accessibility to solvent and a reduced structural stability of the protein. In particular, M80A features a slightly tighter binding to CL at low CL/cytc ratios compared to wt ycc, possibly due to the lift of some constraints to the insertion of the CL acyl chains into the protein hydrophobic core. M80A binding to CL maintains the dependence on the CL-to-cytc mixing scheme displayed by the wt species.


Assuntos
Metionina , Saccharomyces cerevisiae , Metionina/química , Saccharomyces cerevisiae/metabolismo , Cardiolipinas/química , Citocromos c/química , Heme/química , Ligantes , Racemetionina
3.
Nano Lett ; 24(1): 370-377, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38154104

RESUMO

The selective interaction of cytochrome c (Cyt c) with cardiolipin (CL) is involved in mitochondrial membrane permeabilization, an essential step for the release of apoptosis activators. The structural basis and modulatory mechanism are, however, poorly understood. Here, we report that Cyt c can induce CL peroxidation independent of reactive oxygen species, which is controlled by its redox states. The structural basis of the Cyt c-CL binding was unveiled by comprehensive spectroscopic investigation and mass spectrometry. The Cyt c-induced permeabilization and its effect on membrane collapse, pore formation, and budding are observed by confocal microscopy. Moreover, cytochrome c oxidase dysfunction is found to be associated with the initiation of Cyt c redox-controlled membrane permeabilization. These results verify the significance of a redox-dependent modulation mechanism at the early stage of apoptosis, which can be exploited for the design of cytochrome c oxidase-targeted apoptotic inducers in cancer therapy.


Assuntos
Citocromos c , Análise Espectral Raman , Citocromos c/química , Citocromos c/metabolismo , Citocromos c/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oxirredução , Cardiolipinas/química , Cardiolipinas/metabolismo , Cardiolipinas/farmacologia , Membranas Mitocondriais/metabolismo , Apoptose
4.
J Phys Chem B ; 127(50): 10778-10791, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38084584

RESUMO

Mitochondria are known as the powerhouse of the cell because they produce energy in the form of adenosine triphosphate. They also have other crucial functions such as regulating apoptosis, calcium homeostasis, and reactive oxygen species production. To perform these diverse functions, mitochondria adopt specific structures and frequently undergo dynamic shape changes, indicating that their mechanical properties play an essential role in their functions. To gain a detailed understanding at the molecular level of the structure and mechanical properties of mitochondria, we carry out atomistic molecular dynamics simulations for three inner mitochondrial membranes and three outer mitochondrial membrane models. These models take into account variations in cardiolipin and cholesterol concentrations as well as the symmetry/asymmetry between the two leaflets. Our simulations allow us to calculate various structural quantities and the bending, twisting, and tilting elastic moduli of the membrane models. Our results indicate that the structures of the inner and outer mitochondrial membranes are quite similar and do not depend much on the variation in lipid compositions. However, the bending modulus of the membranes increases with increasing concentrations of cardiolipin or cholesterol but decreases with a membrane asymmetry. Notably, we found that the dipole potential of the membrane increases with an increasing cardiolipin concentration. Finally, possible roles of cardiolipin in regulating ion and proton currents and maintaining the cristate are discussed in some details.


Assuntos
Cardiolipinas , Simulação de Dinâmica Molecular , Cardiolipinas/química , Membranas Mitocondriais/química , Elasticidade , Colesterol/metabolismo
5.
Biophys J ; 122(21): 4274-4287, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37798880

RESUMO

Mammalian and Drosophila melanogaster model mitochondrial membrane compositions are constructed from experimental data. Simplified compositions for inner and outer mitochondrial membranes are provided, including an asymmetric inner mitochondrial membrane. We performed atomistic molecular dynamics simulations of these membranes and computed their material properties. When comparing these properties to those obtained by extrapolation from their constituting lipids, we find good overall agreement. Finally, we analyzed the curvature effect of cardiolipin, considering ion concentration effects, oxidation, and pH. We draw the conclusion that cardiolipin-negative curvature is most likely due to counterion effects, such as cation adsorption, in particular of H3O+. This oft-neglected effect might account for the puzzling behavior of this lipid.


Assuntos
Cardiolipinas , Membranas Mitocondriais , Animais , Cardiolipinas/química , Drosophila melanogaster , Simulação de Dinâmica Molecular , Mamíferos
6.
Nature ; 620(7976): 1101-1108, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37612504

RESUMO

Distinct morphologies of the mitochondrial network support divergent metabolic and regulatory processes that determine cell function and fate1-3. The mechanochemical GTPase optic atrophy 1 (OPA1) influences the architecture of cristae and catalyses the fusion of the mitochondrial inner membrane4,5. Despite its fundamental importance, the molecular mechanisms by which OPA1 modulates mitochondrial morphology are unclear. Here, using a combination of cellular and structural analyses, we illuminate the molecular mechanisms that are key to OPA1-dependent membrane remodelling and fusion. Human OPA1 embeds itself into cardiolipin-containing membranes through a lipid-binding paddle domain. A conserved loop within the paddle domain inserts deeply into the bilayer, further stabilizing the interactions with cardiolipin-enriched membranes. OPA1 dimerization through the paddle domain promotes the helical assembly of a flexible OPA1 lattice on the membrane, which drives mitochondrial fusion in cells. Moreover, the membrane-bending OPA1 oligomer undergoes conformational changes that pull the membrane-inserting loop out of the outer leaflet and contribute to the mechanics of membrane remodelling. Our findings provide a structural framework for understanding how human OPA1 shapes mitochondrial morphology and show us how human disease mutations compromise OPA1 functions.


Assuntos
GTP Fosfo-Hidrolases , Fusão de Membrana , Mitocôndrias , Membranas Mitocondriais , Humanos , Biocatálise , Cardiolipinas/química , Cardiolipinas/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/química , Mitocôndrias/metabolismo , Membranas Mitocondriais/química , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Mutação , Domínios Proteicos , Multimerização Proteica , Dinâmica Mitocondrial
7.
Colloids Surf B Biointerfaces ; 229: 113480, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37536168

RESUMO

Understanding the mechanism by which an antibacterial agent interacts with a model membrane provides vital information for better design of future antibiotics. In this study, we investigated two antibacterial polymers, hydrophilic C0-T-p and hydrophobic C8-T-p ionenes, known for their potent antimicrobial activity and ability to disrupt the integrity of lipid bilayers. Our hypothesize is that the composition of a lipid bilayer alters the mechanism of ionenes action, potentially providing an explanation for the observed differences in their bioactivity and selectivity. Calcein release experiments utilizing a range of liposomes to examine the impact of (i) cardiolipin (CL) to phosphatidylglycerol (PG) ratio, (ii) overall vesicle charge, and (iii) phosphatidylethanolamine (PE) to phosphatidylcholine (PC) ratio on the activity of ionenes were performed. Additionally, polymer-bilayer interactions were also investigated through vesicle fusion assay and the black lipid membrane (BLM) technique The activity of C0-T-p is strongly influenced by the amount of cardiolipin, while the activity of C8-T-p primarily depends on the overall vesicle charge. Consequently, C0-T-p acts through interactions with CL, whereas C8-T-p modifies the bulk properties of the membrane in a less-specific manner. Moreover, the presence of a small amount of PC in the membrane makes the vesicle resistant to permeabilization by tested molecules. Intriguingly, more hydrophilic C0-T-p retains higher membrane activity compared to the hydrophobic C8-T-p. However, both ionenes induce vesicle fusion and increase lipid bilayer ion permeability.


Assuntos
Cardiolipinas , Bicamadas Lipídicas , Bicamadas Lipídicas/química , Cardiolipinas/química , Fosfatidilcolinas , Lipossomos/química , Lecitinas , Antibacterianos/farmacologia
8.
Biophys Chem ; 301: 107082, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37544082

RESUMO

Curcumin, a plant polyphenol extracted from the Chinese herb turmeric, has gained widespread attention in recent years because of its multifunctional properties as antioxidant, antinflammatory, antimicrobial, and anticancer agent. Effects of the molecule on mitochondrial membranes properties have also been evidenced. In this work, the interaction of curcumin with models of mitochondrial membranes composed of dimyristoylphosphatidylcholine (DMPC) or mixtures of DMPC and 4 mol% tetramyristoylcardiolipin (TMCL) has been investigated by using biophysical techniques. Spectrophotometry and fluorescence allowed to determine the association constant and the binding energy of curcumin with pure DMPC and mixed DMPC/TMCL aqueous bilayers. The molecular organization of pure DMPC and cardiolipin-containing Langmuir monolayers at the air-water interface were investigated and the morphology of the monolayers transferred into mica substrates were characterized through atomic force microscopy (AFM). It is found that curcumin associates at the polar/apolar interface of the lipid bilayers and the binding is favored in the presence of cardiolipin. At 2 mol%, curcumin is well miscible with lipid monolayers, particularly with mixed DMPC/TMCL ones, where compact terraces formation characterized by a reduction of the surface roughness is observed in the AFM topographic images. At 10 mol%, curcumin perturbs the stability of DMPC monolayers and morphologically are evident terraces surrounded by cur aggregates. In the presence of TMCL, very few curcumin aggregates and larger compact terraces are observed. The overall results indicate that cardiolipin augments the incorporation of curcumin in model membranes highlighting the mutual interplay cardiolipin-curcumin in mitochondrial membranes.


Assuntos
Cardiolipinas , Curcumina , Cardiolipinas/química , Dimiristoilfosfatidilcolina/química , Curcumina/farmacologia , Bicamadas Lipídicas/química , Microscopia de Força Atômica
9.
Redox Biol ; 64: 102774, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37300954

RESUMO

Cardiolipin is a unique phospholipid of the inner mitochondrial membrane (IMM) as well as in bacteria. It performs several vital functions such as resisting osmotic rupture and stabilizing the supramolecular structure of large membrane proteins, like ATP synthases and respirasomes. The process of cardiolipin biosynthesis results in the production of immature cardiolipin. A subsequent step is required for its maturation when its acyl groups are replaced with unsaturated acyl chains, primarily linoleic acid. Linoleic acid is the major fatty acid of cardiolipin across all organs and tissues, except for the brain. Linoleic acid is not synthesized by mammalian cells. It has the unique ability to undergo oxidative polymerization at a moderately accelerated rate compared to other unsaturated fatty acids. This property can enable cardiolipin to form covalently bonded net-like structures essential for maintaining the complex geometry of the IMM and gluing the quaternary structure of large IMM protein complexes. Unlike triglycerides, phospholipids possess only two covalently linked acyl chains, which constrain their capacity to develop robust and complicated structures through oxidative polymerization of unsaturated acyl chains. Cardiolipin, on the other hand, has four fatty acids at its disposal to form covalently bonded polymer structures. Despite its significance, the oxidative polymerization of cardiolipin has been overlooked due to the negative perception surrounding biological oxidation and methodological difficulties. Here, we discuss an intriguing hypothesis that oxidative polymerization of cardiolipin is essential for the structure and function of cardiolipin in the IMM in physiological conditions. In addition, we highlight current challenges associated with the identification and characterization of oxidative polymerization of cardiolipin in vivo. Altogether, the study provides a better understanding of the structural and functional role of cardiolipin in mitochondria.


Assuntos
Cardiolipinas , Fosfolipídeos , Animais , Cardiolipinas/química , Cardiolipinas/metabolismo , Polimerização , Fosfolipídeos/metabolismo , Ácido Linoleico , Ácidos Graxos , Estresse Oxidativo , Mamíferos/metabolismo
10.
Molecules ; 28(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37298998

RESUMO

Diet restriction (DR) ameliorates obesity by regulating mitochondrial function. Cardiolipin (CL), a mitochondrial phospholipid, is closely associated with mitochondrial function. This study aimed to evaluate the anti-obesity effects of graded levels of DR based on mitochondrial CL levels in the liver. Obese mice were treated with 0%, 20%, 40%, and 60% reductions in the normal diet compared to normal animals (0 DR, 20 DR, 40 DR, and 60 DR groups, respectively). Biochemical and histopathological analyses were performed to evaluate the ameliorative effects of DR on obese mice. The altered profile of mitochondrial CL in the liver was explored using a targeted metabolomics strategy by ultra-high-pressure liquid chromatography MS/MS coupled with quadrupole time-of-flight mass spectrometry. Finally, gene expression associated with CL biosynthesis and remodeling was quantified. Tissue histopathology and biochemical index evaluations revealed significant improvements in the liver after DR, except for the 60 DR group. The variation in mitochondrial CL distribution and DR levels showed an inverted U-shape, and the CL content in the 40 DR group was the most upregulated. This result is consistent with the results of the target metabolomic analysis, which showed that 40 DR presented more variation. Furthermore, DR led to increased gene expression associated with CL biosynthesis and remodeling. This study provides new insights into the mitochondrial mechanisms underlying DR intervention in obesity.


Assuntos
Cardiolipinas , Espectrometria de Massas em Tandem , Camundongos , Animais , Cardiolipinas/análise , Cardiolipinas/química , Cardiolipinas/metabolismo , Camundongos Obesos , Mitocôndrias/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos
11.
J Am Chem Soc ; 145(20): 11311-11322, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37103240

RESUMO

Reliable probing of cardiolipin (CL) content in dynamic cellular milieux presents significant challenges and great opportunities for understanding mitochondria-related diseases, including cancer, neurodegeneration, and diabetes mellitus. In intact respiring cells, selectivity and sensitivity for CL detection are technically demanding due to structural similarities among phospholipids and compartmental secludedness of the inner mitochondrial membrane. Here, we report a novel "turn-on" fluorescent probe HKCL-1M for detecting CL in situ. HKCL-1M displays outstanding sensitivity and selectivity toward CL through specific noncovalent interactions. In live-cell imaging, its hydrolyzed product HKCL-1 efficiently retained itself in intact cells independent of mitochondrial membrane potential (Δψm). The probe robustly co-localizes with mitochondria and outperforms 10-N-nonyl acridine orange (NAO) and Δψm-dependent dyes with superior photostability and negligible phototoxicity. Our work thus opens up new opportunities for studying mitochondrial biology through efficient and reliable visualization of CL in situ.


Assuntos
Cardiolipinas , Corantes Fluorescentes , Corantes Fluorescentes/química , Cardiolipinas/química , Mitocôndrias/química , Fosfolipídeos/análise , Membranas Mitocondriais
12.
Molecules ; 28(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36985664

RESUMO

Thermal lens spectrometry along with spectrophotometric titration were used to assess the composition of the complex of oxidized cytochrome c (ferricytochrome c) with 1,1',2,2'-tetraoleyl cardiolipin, which plays a key role in the initiation of apoptosis. Spectrophotometric titration was carried out for micromolar concentrations at which the complex is mainly insoluble, to assess the residual concentration in the solution and to estimate the solubility of the complex. Thermal lens spectrometry was used as a method of molecular absorption spectroscopy, which has two advantages over conventional optical transmission spectroscopy: the higher sensitivity of absorbance measurements and the possibility of studying the light absorption by chromophores and heat transfer in complex systems, such as living cells or tissues. Thermal lens measurements were carried out at nanomolar concentrations, where the complex is mainly in solution, i.e., under the conditions of its direct measurements. From the thermal lens measurements, the ratios of cytochrome c and cardiolipin in the complex were 50 at pH 7.4; 30 at pH 6.8; and 10 at pH 5.5, which fit well to the spectrophotometric data. The molecular solubility of the complex at pH 6.8-7.4 was estimated as 30 µmol/L.


Assuntos
Cardiolipinas , Citocromos c , Citocromos c/química , Cardiolipinas/química , Espectrofotometria
13.
Molecules ; 28(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838917

RESUMO

In this article, we used molecular dynamics (MD), one of the most common methods for simulations of membranes, to study the interaction of fluorescent membranotropic biological probe 10-N-nonyl acridine orange (NAO) with the bilayer, mimicking a plasma membrane of Gram-negative bacteria. Fluorescent probes serve as an effective tool to study the localization of different components in biological membranes. Revealing the molecular details of their interaction with membrane phospholipids is important both for the interpretation of experimental results and future design of lipid-specific stains. By means of coarse-grained (CG) MD, we studied the interactions of NAO with a model membrane, imitating the plasma membrane of Gram-negative bacteria. In our simulations, we detected different NAO forms: monomers, dimers, and stacks. NAO dimers had the central cardiolipin (CL) molecule in a sandwich-like structure. The stacks were formed by NAO molecules interlayered with anionic lipids, predominantly CL. Use of the CG approach allowed to confirm the ability of NAO to bind to both major negatively charged phospholipids, phosphatidylglycerol (PG) and CL, and to shed light on the exact structure of previously proposed NAO-lipid complexes. Thus, CG modeling can be useful for the development of new effective and highly specific molecular probes.


Assuntos
Cardiolipinas , Corantes Fluorescentes , Cardiolipinas/análise , Cardiolipinas/química , Cardiolipinas/metabolismo , Corantes Fluorescentes/química , Laranja de Acridina/química , Fosfatidilgliceróis , Membrana Celular/metabolismo , Fosfolipídeos/metabolismo , Bactérias/metabolismo
14.
Prog Lipid Res ; 88: 101195, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36202313

RESUMO

Cardiolipin (CL) is a unique phospholipid that is fundamental to the structure and function of the highly curved cristae membranes of mitochondria. Given its distinctive cone-shaped molecular architecture, CL induces negative membrane curvature in a bilayer setting. Another key feature of CL is its intrinsic ability to interact with various ligands, including cytochrome c, the anti-neoplastic anthracycline, doxorubicin, and the divalent cation, calcium. Although these, and other, binding interactions exert profound effects on mitochondrial and cellular function, they are difficult to study in intact mitochondria. Whereas liposomes provide a potential model membrane system, their relatively large size, limited ability to accommodate CL and the presence of an inaccessible interior bilayer leaflet, make these structures suboptimal. The discovery that CL can be formulated into aqueous soluble, reconstituted high density lipoprotein particles, termed nanodisks (ND), provides an alternative model membrane system. Comprised solely of CL and an apolipoprotein scaffold, CL-ND exist as a disk-shaped phospholipid bilayer whose perimeter is stabilized by contact with the scaffold protein. In these nanoscale particles, both leaflets of the bilayer are solvent accessible, an advantage for studies of ligand interactions. Recent experiments employing CL-ND have yielded novel insight into apoptosis, cardiotoxicity and CL-dependent bilayer to non-bilayer transitions.


Assuntos
Cardiolipinas , Membranas Mitocondriais , Cardiolipinas/química , Cardiolipinas/metabolismo , Membranas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Lipossomos , Doxorrubicina/metabolismo
15.
Chemphyschem ; 23(19): e202200218, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35920819

RESUMO

Cardiolipin (CL) is a unique phospholipid featuring a dimeric structure. With its four alkyl chains, it has a large hydrophobic region and the charged hydrophilic head group is relatively small. Biological membranes exhibit CL exclusively in the inner bacterial and mitochondrial membranes. Alteration of CL packing can lead to structural changes and membrane instabilities. One environmental influence is the change in pH. Since the acidic properties of the phosphate head groups remain still controversial in literature, this work focusses on the influence of pH on the ionization degree of CL. For the analyses, surface pressure (π) - molecular area (A) isotherm experiments were combined with total reflection X-ray fluorescence (TRXF) and grazing incidence X-ray diffraction (GIXD). Continuous ionization with a high CL packing density was observed in the monolayer over a wide pH range. No individual pKa values can be assigned to the two phosphate groups, but mutual influence is observed.


Assuntos
Cardiolipinas , Fosfolipídeos , Cardiolipinas/química , Concentração de Íons de Hidrogênio , Fosfatos , Difração de Raios X
16.
J Lipid Res ; 63(6): 100227, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35569528

RESUMO

Cardiolipin (CL) has been shown to play a crucial role in regulating the function of proteins in the inner mitochondrial membrane. As the most abundant protein of the inner mitochondrial membrane, the ADP/ATP carrier (AAC) has long been the model of choice to study CL-protein interactions, and specifically bound CLs have been identified in a variety of crystal structures of AAC. However, how CL binding affects the structural dynamics of AAC in atomic detail remains largely elusive. Here we compared all-atom molecular dynamics simulations on bovine AAC1 in lipid bilayers with and without CLs. Our results show that on the current microsecond simulation time scale: 1) CL binding does not significantly affect overall stability of the carrier or structural symmetry at the matrix-gate level; 2) pocket volumes of the carrier and interactions involved in the matrix-gate network become more heterogeneous in parallel simulations with membranes containing CLs; 3) CL binding consistently strengthens backbone hydrogen bonds within helix H2 near the matrix side; and 4) CLs play a consistent stabilizing role on the domain 1-2 interface through binding with the R30:R71:R151 stacking structure and fixing the M2 loop in a defined conformation. CL is necessary for the formation of this stacking structure, and this structure in turn forms a very stable CL binding site. Such a delicate equilibrium suggests the strictly conserved R30:R71:R151stacking structure of AACs could function as a switch under regulation of CLs. Taken together, these results shed new light on the CL-mediated modulation of AAC function.


Assuntos
Cardiolipinas , Translocases Mitocondriais de ADP e ATP , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cardiolipinas/química , Bovinos , Citosol/metabolismo , Translocases Mitocondriais de ADP e ATP/química , Translocases Mitocondriais de ADP e ATP/metabolismo
17.
Biophys J ; 121(6): 886-896, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35176270

RESUMO

Lower tract respiratory diseases such as pneumonia are pervasive, affecting millions of people every year. The stability of the air/water interface in alveoli and the mechanical performance during the breathing cycle are regulated by the structural and elastic properties of pulmonary surfactant membranes (PSMs). Respiratory dysfunctions and pathologies often result in, or are caused by, impairment of the PSMs. However, a gap remains between our knowledge of the etiology of lung diseases and the fundamental properties of PSMs. For example, bacterial pneumonia in humans and mice has been associated with aberrant levels of cardiolipin, a mitochondrial-specific, highly unsaturated 4-tailed anionic phospholipid, in lung fluid, which likely disrupts the structural and mechanical integrity of PSMs. Specifically, cardiolipin is expected to significantly alter PSM elasticity due to its intrinsic molecular properties favoring membrane folding away from a flat configuration. In this paper, we investigate the structural and mechanical properties of the lipidic components of PSMs using lipid-based models as well as bovine extracts affected by the addition of pathological cardiolipin levels. Specifically, using a combination of optical and atomic force microscopy with a surface force apparatus, we demonstrate that cardiolipin strongly promotes hemifusion of PSMs and that these local membrane contacts propagate at larger scales, resulting in global stiffening of lung membranes.


Assuntos
Cardiolipinas , Surfactantes Pulmonares , Animais , Cardiolipinas/química , Bovinos , Humanos , Pulmão , Camundongos , Microscopia de Força Atômica , Fosfolipídeos/química , Surfactantes Pulmonares/química
18.
J Inherit Metab Dis ; 45(1): 51-59, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34611930

RESUMO

Barth syndrome is a multisystem disorder caused by an abnormal metabolism of the mitochondrial lipid cardiolipin. In this review, we discuss physical properties, biosynthesis, membrane assembly, and function of cardiolipin. We hypothesize that cardiolipin reduces packing stress in the inner mitochondrial membrane, which arises as a result of protein crowding. According to this hypothesis, patients with Barth syndrome are unable to meet peak energy demands because they fail to concentrate the proteins of oxidative phosphorylation to a high surface density in the inner mitochondrial membrane.


Assuntos
Síndrome de Barth/metabolismo , Cardiolipinas/biossíntese , Cardiolipinas/fisiologia , Membranas Mitocondriais/metabolismo , Cardiolipinas/química , Humanos , Mitocôndrias/metabolismo , Fosforilação Oxidativa
19.
EMBO J ; 40(23): e108428, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34661298

RESUMO

Mitochondrial cristae are extraordinarily crowded with proteins, which puts stress on the bilayer organization of lipids. We tested the hypothesis that the high concentration of proteins drives the tafazzin-catalyzed remodeling of fatty acids in cardiolipin, thereby reducing bilayer stress in the membrane. Specifically, we tested whether protein crowding induces cardiolipin remodeling and whether the lack of cardiolipin remodeling prevents the membrane from accumulating proteins. In vitro, the incorporation of large amounts of proteins into liposomes altered the outcome of the remodeling reaction. In yeast, the concentration of proteins involved in oxidative phosphorylation (OXPHOS) correlated with the cardiolipin composition. Genetic ablation of either remodeling or biosynthesis of cardiolipin caused a substantial drop in the surface density of OXPHOS proteins in the inner membrane of the mouse heart and Drosophila flight muscle mitochondria. Our data suggest that OXPHOS protein crowding induces cardiolipin remodelling and that remodeled cardiolipin supports the high concentration of these proteins in the inner mitochondrial membrane.


Assuntos
Aciltransferases/fisiologia , Cardiolipinas/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Musculares/metabolismo , Membranas Mitocondriais/metabolismo , Fosforilação Oxidativa , Proteínas/metabolismo , Animais , Cardiolipinas/química , Cardiolipinas/genética , Drosophila melanogaster , Ácidos Graxos/metabolismo , Feminino , Lipossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Saccharomyces cerevisiae
20.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502299

RESUMO

The anti-apoptotic protein Bcl-xL regulates apoptosis by preventing the permeation of the mitochondrial outer membrane by pro-apoptotic pore-forming proteins, which release apoptotic factors into the cytosol that ultimately lead to cell death. Two different membrane-integrated Bcl-xL constructs have been identified: a membrane-anchored and a membrane-inserted conformation. Here, we use molecular dynamics simulations to study the effect of the mitochondrial specific lipid cardiolipin and the protein protonation state on the conformational dynamics of membrane-anchored Bcl-xL. The analysis reveals that the protonation state of the protein and cardiolipin content of the membrane modulate the orientation of the soluble head region (helices α1 through α7) and hence the exposure of its BH3-binding groove, which is required for its interaction with pro-apoptotic proteins.


Assuntos
Cardiolipinas/metabolismo , Membrana Celular/metabolismo , Conformação Proteica , Proteína bcl-X/química , Proteína bcl-X/metabolismo , Apoptose , Cardiolipinas/química , Humanos , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...